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Preamble 

Many researchers have attended a statistics course at some time in their lives, but still 

find some aspects of statistics confusing, particularly in relation to the analysis of their 

own data.  Here we show that simple presentations can often satisfy most of the 

objectives of a research study.  These are easy to undertake by all scientists.  This 

approach also clarifies the extra information that is provided by an Analysis of 

Variance (ANOVA) and by the use of standard statistical models. 

We contrast this approach with the "automatic" attitude to analysis that is sometimes 

used by scientists who are not comfortable with statistics.  Their approach is 

characterised by the blanket statement that the data will be "analysed by ANOVA".  

We find that an uncritical ANOVA by itself rarely relates to the experimental 

objectives. 

There are many reasons why researchers need to reconsider their approach to data 

analysis.  One reason is that more research in the developing world is being carried out 

on-farm, where the simple and traditional experimental designs are often 

inappropriate.  Data are often codes, perhaps on a 5-point scale, as well as continuous 

measurements, such as crop or milk yield, and many different variables are collected.  

The data often have greater complexity than on-station trials, with information being 

recorded about the farmer – e.g. farmer practice, size of farm etc.  – as well as being 

collected at the plot level, such as crop yield.  

This guide offers advice to researchers on a reliable approach to the analysis of on-

station and on-farm trials.  The analysis should satisfy the objectives of the experiment 

and ensure that the researcher gets as much as possible out of the data collected.  This 

approach is described in Part A of this guide.  Part B summarises some common 

complications that often arise in the analysis of experimental data. 

 

Acknowledgement 

This guide has been developed from a course on the analysis of experimental data that 

has been prepared jointly by the Statistical Services Centre and ICRAF.  These 

guidelines give the key points.  The full course notes and examples are available on 

CD or from the Web sites at Reading or ICRAF in both English and French. 

The approach used in this guide and in the corresponding training courses has been 

tested in English in a regional course in Nairobi and in French in national training 

courses in Benin and Guinea.  It appears to be constructive in giving scientists the 

skills to recognise the types of approach needed for the analysis of their data and the 

confidence to proceed with the analysis even if there are complications in the data. 
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Part A: Strategy for Data Analysis 

 

1.   Introduction 

In the same way that it takes time to design and to carry out a good experiment, it also 

takes time to conduct an effective data analysis.  The first issue is data entry to the 

computer and ensuring it is in a suitable format for analysis.  The data may have to be 

summarised to the "right" level, e.g. plant height to mean height per plot, or 

transformed, for example from kgs/plot to tons/ha.  This can be in the statistics 

package or in the database environment e.g. Access or Excel, that was used for the 

data entry.  The choice is up to the user. 

The analysis should then unfold as an iterative sequence, rather than a straight jump to 

the analysis of variance.  There are three main parts:  
 

 Relating the analysis to the stated objectives of the study which is crucial to 

addressing the researchers questions. 
 

 Exploratory and descriptive analysis where preliminary answers to the objectives 

can be realised via simple tables or graphs of the treatment means or other 

summaries. 
 

 ANOVA and formal inference methods to check on the adequacy of the previous 

steps and to add precision to the findings of the exploratory analysis. 
 

Sections 2 to 4 are concerned with the first two parts of this process.  These are 

straightforward and many trials can be reported, at least initially, following these parts. 

The process is iterative.  For example the first use of ANOVA is usually largely 

exploratory and often prompts a fresh look at the objectives of the study. 

The last step also allows the researcher to attach p-values to the comparisons of 

interest, and to quantify the uncertainty in the assertions about treatment effects.  Since 

formal analysis is necessary for published reports, we also consider here how to tackle 

any analysis, no matter how messy, by following the principles of statistical modelling.  

This is essential for getting the most out of data, particularly where the data structures 

are complex, as in large on-farm trials.  Modern software is now sufficiently user-

friendly for researchers to complete some of these analyses, once they understand the 

general principles of modelling.  
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2.   Objectives of the Analysis 

The first stage is to clarify the objectives of the analysis.  These are based on the 

objectives of the study and therefore require the experimental protocol.  It is important 

to link design and analysis at the planning stage of a study, since the objectives of an 

experiment should be given in the protocol in such a way that they define the 

treatments to be used and the measurements that are needed. 

Some experiments have just a single treatment factor, such as ten varieties of maize, 

plus one or two control treatments representing the varieties in current use.  An 

objective might then be to decide whether to recommend some of the new varieties, 

compared to the ones currently in use.  This recommendation could be based on one or 

more criteria such as high yield, or acceptable taste and these correspond to the 

measurements taken. 

Many trials have a factorial treatment structure, with two or more factors, such as 

variety, level of fertiliser and frequency of weeding.  In such trials there are usually 

more objectives - some that relate separately to the individual factors and some to the 

more complicated recommendations that would be needed if the factors do not act 

independently of one another.  Where treatment factors are quantitative, such as 

amount of fertiliser, the objectives are often to recommend a level that produces an 

economic increase in the yield, compared to the cost. 

The above examples emphasise the key role played by the objectives of the trial in 

determining the analysis.  In principle the objectives in the protocol and the objectives 

of the analysis will be the same, but the objectives of the analysis may be different for 

a number of reasons. 

 The objectives of the study may have been stated in a vague way 

 There may be other, unstated objectives that may be added, given the data that are 

available 

 Some of the original objectives may not be possible, either because the required 

data were not measured or because of unexpected complications during the trial. 

The objectives of the analysis may evolve as the analysis progresses. 

In realising the objectives, it is often necessary to clarify the response variables of 

interest.  For instance, if the objective of the trial is to look at the disease resistance of 

a crop, and individual plants in a plot are assessed on a scale from 0 (no disease) to 5 

(very badly diseased), how is disease resistance to be assessed?  Is it, for instance, by 

the proportion of plants in a plot that are disease free? or by the mean or the maximum 

disease score of the plot?  Normally, the variables proposed are specifed in the 

experimental protocol. 
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We strongly recommend that this preparatory stage include the preparation of the 

initial dummy tables and graphs that the scientist feels will meet the objectives of the 

analysis.  They will often use the treatment means, because the treatments were chosen 

to satisfy the objectives. The specification of these tables/graphs should define the 

particular measurements that will be used. 

Thus, in the first example above, where new varieties of maize were being compared 

with ones in current use, our "dummy" table may look like: 

 

Variety Mean Yield (kg/ha) Ranking of taste 

Control variety 1 ... ... 

Control variety 2 ... ... 

 ... ... 

Variety A ... ... 

Variety B ... ... 

etc, in decreasing order of mean yield. ... ... 

 

In the example where one treatment factor was the level of fertiliser, a graph of mean 

"profit" (i.e. yield - cost of fertiliser) on the y-axis, versus amount of fertiliser on the x-

axis, might be suggested as one presentation.  

 

3.   Understanding Variability 

The variability observed in data from plots or animals in an experiment can be due to 

the treatments which were applied, to the layout (e.g. in which block the plot is sited 

– a shady area as opposed to sunny site),  and to the fact that any two plots 

experiencing the same experimental conditions give different yields – i.e. the plot-to-

plot variability.  The analysis is concerned with explaining the variability in the data, 

and determining whether, for instance, treatment effects are larger than would be 

expected of random variability.  

Most statistical textbooks describe data analysis in terms of mathematical models and 

Greek letters such as  and .  Here we prefer a more practical approach and use the 

following general form to describe the data for any particular measurement in an 

experiment: 

 data    =    pattern    +    residual 
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Pattern is the result of factors, such as the experimental treatments and other 

characteristics often determined by the layout.   

Residual is the remaining unexplained variation, which we will also seek to explain 

further (Section 7).   

Identifying that part of the pattern that is due to the treatments is an important part of 

the analysis, because this relates directly to the objectives of the study.   

All data analyses depend on this framework, and we return to it later when discussing 

more formal methods of analysis.  The type of measurement also determines the 

analysis method, and data such as yields, fall within the class of "Analysis of 

Variance" or "Linear Models".  Other types of data, such as insect counts, number of 

diseased leaves per plant, or preference scores use "Analysis of Deviance" or 

"Generalised Linear Models" - but the idea of expressing variability in terms of pattern 

and residual still apply.  

 

 

4.   Preliminary Analysis 

The simple methods described here apply similarly to all types of data.  Assuming 

some tables and graphs have already been identified from the objectives, it is easy to 

"fill in the numbers" and observe the patterns of response.  This is the use of 

descriptive statistics to explore the patterns of interest, such as the treatment effects.  

Boxplots, scatter plots and trellis plots are all useful tools of exploratory or initial 

methods of data analysis (sometimes called EDA, or IDA).  They give insights into the 

variability of the data about the treatment pattern and highlight any outliers that need 

further clarification.  Suspected patterns, such as block effects or a fertility gradient 

can also be explored, and sometimes unexpected patterns emerge that the researcher 

may want to investigate further. 

The graph below shows a simple example of an exploratory analysis, where the main 

objective of the trial was to suggest the high yielding varieties.  It shows that the yields 

in all three replicates are consistent except for Variety 8, which has yields of 2.4, 2.0 

and 1.4 tonnes/ha in the three replicates.  Clearly something is odd!  Examination of 

other variables confirmed that the problem was not a typing error, but it was too late to 

return to the field.  One possibility is to omit Variety 8 from the formal analysis and 

report its results separately. 
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In simple experiments these preliminary phases may take just a short time.  In contrast, 

in a large on-farm study, most of the analysis consists of (a) summarising the interview 

data as simple tables and (b) looking at treatment comparisons in subgroups of farms.  

The preliminary work therefore constitutes the bulk of the analysis, and is crucial so 

that the researcher can recognise the patterns in the data. 

Once the appropriate descriptive statistics have been tabulated and/or graphed, the 

researchers has been able to draw some, albeit subjective, conclusions about the study 

objectives.  It is therefore possible to write a draft report of the study! 

We are advocating here that a researcher can learn a lot about the data by paying close 

attention to the objectives and producing some summary tables and graphs.  So why 

not stop here?  What is the use of ANOVA and of more formal methods of analysis? 

There are two main limitations to the exploratory analysis.  One is that the data are 

usually only examined in "slices".  For example we can look at the pattern due to 

treatment (and the residual variability) ignoring blocks, and then look at the pattern 

due to blocks; but it is difficult to look at several components of the pattern at the 

same time.  This is particularly important when there are many factors or when data 

structures are complicated as in large on-farm trials.  We need a method of 

apportioning variability across different sources all at once: this is the role of 

ANOVA. 

Second,  the conclusions drawn from the summary tables are still subjective.  Some 

measure of precision needs to be attached to the effects observed.  For this we need 

more formal methods of analysis. 
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5.   The Role of Analysis of Variance 

Most scientists know that ANOVA is the key tool in the analysis of experimental data, 

yet many do not know how to fully interpret it.  Here we illustrate what it provides in 

addition to the tables of means that have been used above. 

5.1   As A Descriptive Tool 

In the previous section we introduced the idea that, for any measurement, we can 

consider 

 data    =    pattern    +    residual 

as a summary of the variation in our data.  The analysis of variance is a technique with 

which we can look at the whole pattern, e.g. blocks and all treatment factors together, 

and identify the components that are important.  Also, because it extracts all the 

pattern, it also provides an opportunity to look at the residuals, i.e. the part of the data 

that can not be explained by the model, or pattern, in the experiment. 

The ANOVA table contains elements called sums of square, degrees of freedom and 

mean squares for both the components of the pattern and the residual. 

 

Source d.f. SS MS 

Pattern 

  for example 

  Blocks 

  Treatments 

   

Residual    

Total    

 

The sums of squares allow us to see what proportion of the variation is explained by 

the different parts of the pattern in the data.  The residual sum of squares shows us 

what remains unexplained, whilst the residual mean square, which estimates the 

variance of the units, should be as small as possible so that differences between the 

treatments can easily be detected. 

Each observation has a contribution to make to the residual sum of squares, and one 

large aberrant observation can have a large impact on this.  These individual residuals 

should therefore be inspected for their influence on the estimate of random variability.  

Most statistical packages will automatically indicate which observations have large 
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residuals, and these should warrant further investigation.  Thus the first use of 

ANOVA is as an exploratory tool. 

In trials where there is more than one treatment factor each line in the ANOVA table 

corresponds to a table of treatment means.  Thus the ANOVA table can be used as a 

sort of "passport" to the respective tables of means.  This can help us decide which 

tables to use to present the results.  For example, in a 2-factor experiment, with variety 

and fertilizer we may have proposed to present the means for each factor separately.  

The ANOVA table may indicate that a large part of the pattern in the data is due to the 

interaction between variety and fertiliser, thus suggesting that we should instead 

present the 2-way table of means.  

5.2   Exploring the treatment structure further 

We now return to the objectives of the trial.  The next step in the analysis of variance 

is to identify which parts of the (treatment) pattern relate to the different objectives 

and then to examine the corresponding sum of squares and effects.  For qualitative 

treatment factors, (like variety) this is often through the use of treatment contrasts.  

For quantitative factors, like the spacing factor above it is often through a 

consideration of the line or curve that models the effect of the changing level of the 

factor.  These graphs have normally been given earlier, see Section 3, but we now 

know that they arise from a treatment effect that has explained a reasonable proportion 

of the variability in the trial. 

5.3   Statistical Inference 

In the previous section we have discussed the ANOVA table without the distraction of 

F probabilities and t-values - we now add the ideas of statistical inference.  The 

concepts are reviewed in the guide on statistical inference and this guide assumes the 

basic concepts.  These include the ideas that the standard error of an estimate is a 

measure of its precision, and that a confidence interval for a treatment mean is an 

interval likely to contain the mean and not an interval that contains most of the 

measurements for that treatment. 

The first part of statistical inference in the analysis of experimental data is usually the 

F-probabilities that are given in the final column of the ANOVA table above.  They 

enable us to test certain hypotheses about the components of the pattern part of the 

data.  The p-values (significance levels) and the magnitude of the relevant mean 

squares in the table are the "passport" to help decide which components of the pattern 

we wish to look at in more detail. 



© SSC 2001 – The Analysis of Experimental Data 11 

This "passport" must not be used too strictly!  The significance test is usually one of 

no treatment difference, between any of the levels, which is almost certainly untrue.  

What we usually want to find out is whether any of the differences that relate to the 

objectives can be estimated with any reliability, given the "noise", i.e. the residual 

variability that is in the data. 

The second main component of statistical inference is the standard errors that are 

associated with the important differences in treatment effects.  We recommend that 

tables of treatment means be accompanied by the standard error of a difference, rather 

than the standard error of treatment means, since it is usually the difference between 

treatments which is of interest in a trial.  Values for any important treatment contrasts 

should be accompanied by their standard errors and normally reported in the text.  The 

guide on presentation also gives some guidance on the presentation of graphs. 

For simple experiments we do now have all the tools that are required to conduct a full 

analysis of the data and write a report. 

 

 

6.   Statistical Models  

We include the subject of statistical models in this guide for three reasons.  The first is 

that an understanding of these models enables a wide range of experiments to be 

analysed quite easily. The second is that a description of the statistical model provides 

an easy way to explain the assumptions of the analyses.  The third reason is that once 

the researcher understand the principles of modelling, he can extend these ideas to 

other types of data.  

The essentials of the model have been given already i.e.  

 data  =  pattern  +  residual 

We now formalise this description by defining specific examples.  One is of simple 

regression, where yields may be related to the quantity of Nitrogen in the soil by 

 Yield  =  a  +  b.Nitrogen  + residual 

if there is a linear relationship between Yield and Nitrogen. 

This is an example where the pattern in the yield is a result of its relationship with a 

variate, but the idea is the same if we include factors in the model.  So in a simple 

randomised complete block trial of varieties, we might consider the model as: 

 Yield  =  Constant  +  block effect  +  variety effect  +  residual 
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A third possibility is that we have a mixture of both variates and factors in the model, 

for example 

 Yield = a + b.Nitrogen + block  + treatment  +  residual 

One more bit of terminology is that the idea now is to estimate the unknown 

"parameters" in the model, for example the slope of the regression line would be a 

parameter in a simple regression model.  In the models with factors, the estimates of 

the treatment effects are particularly important, because they relate to the objectives of 

the trial. 

Once users are familiar with the idea of simple linear regression, these models with 

factors are all simple to fit, with current statistics software.  Most packages have an 

"ANOVA" facility for the analysis of data from simple experiments and a regression 

facility for this more general approach1. 

What does the user gain and lose by this new modelling approach, compared to 

thinking in terms of the treatment means as a summary of the effect of each treatment?  

If an experiment is simple, such as a simple randomised block design, then the 

modelling approach is identical to using the simple approach. Thus the estimates of the 

treatment effects are simply the treatment means.  In such cases the ANOVA facility 

for the analysis usually provides a clearer display of the results than the use of the 

regression approach and is usually used. 

The modelling approach comes into its own when the experiment is "unbalanced", or 

there are several missing values.  For example, in a simple on-farm trial all farmers 

may have the same three treatments and so each farmer constitutes a "replicate".  In a 

more general case, perhaps one or two treatments are in common and farmers then 

choose other varieties they would like to try, on an individual basis.  There may be a 

total of eight varieties overall and an initial examination of the data indicates that the 

model for the yields of 

 Yield  =  Constant  +  Farmer effect  +  Variety effect   +  residual 

is sensible to try.  This now needs the more general approach and the estimates of the 

variety effects would not necessarily be the simple treatment means, but would 

automatically be "adjusted means", where the adjustments are for the farmer 

differences.  It should be clear that an adjustment may be needed to compensate for the 

possibility that a particular variety might have just been used by the farmers who 

                                              

1 There is some confusion in terminology between the term ANOVA, used to denote the analysis of a 

simple experiment and the ANOVA table, which is given by both approaches as an initial summary 

of the data. 
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tended to get better yields.  As some treatments were in common for all farmers, those 

yields provide information to make the adjustment. 

 

 

7.   Have I done my analysis correctly? 

We suggest that thinking in terms of the modelling approach is also useful to examine 

both the assumptions of the proposed model and whether it can be improved.  In 

examining a model, we examine its two parts.  First are we happy with the "pattern" 

component" and second, with the "residuals"? 

We often look at the residuals to check if they still contain some extra part that we 

could move into the pattern.  In the example above, the model assumes that a good 

variety is good for all farmers.  Perhaps there is an excellent variety for farmers who 

don’t have striga on their plots, but with striga present it is not so good.  If we have 

also measured striga incidence on the plots, perhaps just as present or absent, then we 

could add it to the model.  Or, if there were just a few farmers with striga, we could 

simply split the data and look separately at the non-striga farms. 

It is also important to check the residuals in a model to see if they satisfy the 

assumptions of the analysis.  One assumption is that the residuals are from a normal 

distribution.  This is not usually critical, but it often helps to check if there are odd 

observations that need special examination.  A second, and more important assumption 

is whether the data are equally variable, because the ANOVA and regression 

approaches both assume there is only one measure of spread for the whole experiment.  

With variables like yields, splitting the data into subsets is an effective way of dealing 

with this. Alternatively, in some circumstances, it may be more sensible to transform 

the data. 
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Part B: Complications in experiments 

 

1.   Introduction 

Researchers sometimes state that they "only do simple trials", as a reason why their 

pre-computer training in statistics is sufficient, but in our experience it is rare to 

encounter a trial that does not have some unforeseen complication.  Indeed, perhaps a 

trial with absolutely no complications is "too good to be true!" 

The three main components of a trial are the treatments that are applied, the layout of 

the experiment and the measurements that are taken.  Describing which of these 

components has become more complicated is useful in categorising the types of 

solution.  

One of the most common complications in experimental data arises because aspects of 

the trial are at multiple levels.  For example in an on-farm trial there are normally 

some measurements at the farm level from interviews and at the plot level from yields.  

A related problem that is common in many trials and that is of repeated 

measurements, as in the case of milk yields or weight gain measured on the same 

animals on several occasions over a period of time.  Both of these complications are to 

some extent planned, as they are part of the design of the experiment, but there are 

also unexpected complications that can arise.  Here we discuss multiple levels and 

repeated measurements, and then give some guidance on some of the common 

"surprise" complications. 

 

 

2.   Multiple levels 

2.1   Introduction 

In a simple randomised complete block experiment, with treatments applied to the 

plots and a single measurement (e.g. maize yield) made on each plot, the analysis is 

simple. Treatments and measurements are at the plot level – and so the treatment 

effects are assessed relative to the variation between plots.  

In many experiments, though, the experimental material have a multi-level structure. 

To explain this, consider the situation where the experimental unit, to which treat-

ments are applied, is a plot containing a number of trees for crop experiments, or a pen 

containing a number of animals for livestock trials.  If measurements are taken for 
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individual trees within each plot, or animals within each pen, then the data  have been 

collected at a lower level to that of the treatments. 

Such experiments are sometimes wrongly analysed, because the different levels of the 

data are ignored, thus giving the impression that there is much more information than 

there really is.   Failure to recognise the multi-level structure mixes up the between 

and within pen (or plot) variation.  This can result in wrong conclusions being made 

about the treatments, since the within pen variation is often much less than between 

pen variation. 

A split plot experiment is a common example where the treatment factors are applied 

at two levels, i.e. some to the main-plots and others to the sub-plots.  In this case data 

are usually collected at the lowest level (e.g. subplots).  Although this is a common 

experimental design the complication is that the analysis still requires the two different 

levels of variation to be correctly recognised.  Many common statistics packages 

produce the correct analysis of variance table, but do a poor job in presenting the full 

results for this design.  Very few supply all the standard errors needed to compare the 

different treatment means.  

A third example of multiple levels is a lattice design – used for large variety trials, 

where there are more treatments than can be accommodated in a complete block 

design. Here the multiple levels are in the layout component.  Thus the treatments and 

measurements are all at the plot level, but the layout consists of replicates and then 

blocks within the replicates and plots within the plots.  Again, these multiple levels 

must be recognised in the analysis. 

Many on-farm trials combine characteristics of a survey and an experiment, and they 

too have a similar hierarchy to the examples above.  For instance the layout structure 

might have many levels, perhaps village, then farming group within village, then 

household, then the field, and finally the plot within the field.   

In on-farm trials each farmer is often the equivalent of a "block" or "replicate".  The 

treatments are applied to plots within the farm and some measurements are taken at the 

plot level.  However, we also interview the farmer, or observe characteristics of the 

whole field, thus we take these measurements at the farm level which is higher than 

that at which the treatments were applied.  Some measurements, as in a participatory 

study, could be from a higher level still, perhaps from discussions at the farming-group 

level.  
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2.2   Dealing with multiple levels 

Once the correct multiple levels structure is recognised in data, some of the analysis 

complications can be overcome.  There are two obvious strategies, which we consider 

in turn:  

 eliminate the different levels and conduct each analysis at a single level,  

 accept the different levels and analyse the data as they stand – as in a split-plot 

analysis. 

Trials where soil measurements are made within each plot are an example where the 

data are collected at a lower level to that at which the treatments were applied.  For 

example 5 cores may be made within each plot, but then be reduced to the plot level, 

by mixing the soil before analysis.  This is the same idea as scoring 10 plants for 

disease within each plot, and then calculating a summary statistic, such as the mean 

disease score, before the main analysis. 

We suggest that this is the appropriate solution for many studies where measurements 

have been taken within the plot.  The summary is now at the plot level, where the 

treatments were applied and the analysis proceeds.  When the data are individual 

measurements of height, weight or yield, then usually a mean or total value for the plot 

is all that is required.  

Sometimes, depending on the objectives, more than one summary value will be 

calculated.  For instance, disease severity might be assessed in terms of the mean 

disease score, the number of plants with a disease score more than 3, and the score of 

the most diseased plant. 

In general we recommend that the raw data at the within plot level should be recorded 

and computerised, rather than only the summaries at the plot level.  This is partly for 

checking purposes and also for ease of calculation.  The computer is a tool to assist the 

researcher in the analysis, and should be used for as much data management and 

calculation as possible.  

On-farm trials often have measurements at the plot level – where the treatments were 

applied – and the farmer level, with data from interviews.  Plot yields are used for the 

objectives related to the observed performance of the treatments, and the interview 

measurements relate to objectives concerned with the farmers priorities and views.  

Here there is no problem: we analyse each set of measurements at its own level. 

The difficulty in analysing on-farm trials arises, because we often need to combine 

information across the two levels.  For example there may be large variability in the 

effect of the treatments (plot level), and we believe some of this variability could be 

explained by the different planting dates, recorded at farm level.  The solution is easy 
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where there are just two treatments.  Then we can just calculate the treatment 

difference for each farmer, which is a single value, and relate it to the other farm-level 

data. 

This solution can be extended to situations where there are more than two treatments 

per farm, by applying the same approach to the important treatment contrasts in turn 

(see Section 5), and relating them to the other farm-level measurements.  However, 

this is a "piecemeal" solution and not particularly suitable if there are more than four 

treatments, or the treatments have a factorial structure.  The alternative is to use a 

multi-level, or mixed model, analysis which can handle the data over the two levels.  

This approach is similar to a split-plot analysis – main plots are the farms – except that 

the data are unbalanced.  It is discussed briefly in the final section of the guide.  

 

 

3.   Repeated Measures made Easy 

Many experiments include the "problem" of repeated measurements, either in time or 

in space.  In an animal experiment we may record the weight of the animal each 

month.  We may harvest the fruit from trees each season, or record the disease score 

each week and so on. 

These are situations where the treatments are applied at the plot or animal level and 

measurements are then made at a lower level, i.e. at time points within each plot or 

animal.  It is tempting to think of this as a multiple-levels problem and we do not resist 

this temptation.  Indeed we claim here that the same "solution" is usually possible as 

was described in the previous section for the case of measurements taken on plants 

within plots. 

The important difference between the 10 plants per plot and the "repeated measures 

problem" is that the 10 plants are normally selected at random.  If instead they are 

deliberately taken along a transect, and their position noted, then they become a 

repeated measure in space. 

Thus the new feature is that these measures are "in order" and it is usually important to 

take account of this part of the structure in the analysis.  In terms of preliminary 

analysis the first step is usually to graph the raw data, i.e. to produce a time-series 

graph showing the development of the measurement for each experimental plot or 

animal. For simple summaries of the experimental treatments the graphs are often 

conveniently grouped so that all the lines corresponding to the same treatment are on 

the same graph. An example is shown below. 
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This figure depicts milk consumption over an eight week period for individual calves 

all being fed the same food supplement.  It shows that milk consumption increases in a 

linear fashion over time until about weeks six or seven, after which time it starts to 

level off or decrease.  We can also see that consumption becomes slightly more 

variable at the later times. 

Such graphs, together with the objectives of the trial, will normally indicate the 

summaries that should be taken of the repeated measures, at the unit (animal or plot) 

level.  Thus, as in the previous section, we eliminate the problem by moving the 

repeated measures data up to the level of the experimental unit.  The reason this is 

usually sufficient is that the objectives are usually directly related to the different 

treatments and they are applied at this higher level. 

As with the multiple levels situation, there is no one "standard" summary with 

repeated measurements.  It may be the value measured at a particular time point, or the 

difference between the value at two points, or something more complicated.  For 

instance, had our example above related to liveweight gain animals, then a reasonable 

summary might have been the slope of the regression line over the first six weeks of 

the study. 

More "advanced " procedures are available for the analysis of repeated measures data, 

which extract more information from the data.  These are not discussed here, because 

we feel that for most situations the simple approach outlined above is sufficient. 
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4.   Surprise Complications 

The table opposite lists some common complications which can arise in experimental 

research.  They are categorised as complications relating to the treatment structure, the 

layout or the measurements.  For example, farmers may not apply exactly the 

treatments specified, there may be missing plots, or there may be some zero or 

otherwise odd values. 

 

Type Complication Example 

Treatment Levels modified Farmers applied "about" 100kgs of mulch 

 Applied to 

different units 

Seed shortage of one variety, so control applied 

to multiple plots in reps 3 and 4. 

Layout Post-hoc blocking 

useful 

Observations indicated that blocking should 

have been in other direction 

 Missing values a) Some farmers left trial. 

b) Stover yields missing on 3 out of 36 plots in 

mulching trial 

c) Some plants missing within the row 

Measurement Zero values Some trees did not survive 

 Strange values Yields for one farmer had different pattern to the 

others 

 Censored values All trees counted, circumference only measured 

on large trees 

 Different 

variability 

Soil nitrogen values showed more plant to plant 

variation in some treatments 

 Affect treatments a) Some plants heavily affected with striga. 

b) some farmers have streak virus 

 

We describe six alternative strategies for coping with such complications.   

The first is simply to ignore the problem and this is sometimes the correct strategy.  

For example in a study on leucaena where an objective was to estimate the volume of 

wood, all trees were counted, but the circumference was not recorded on the small 

trees.  This could perhaps be ignored, because the small trees contribute little to the 

volume.  Alternatively our second strategy is to modify the objectives, or the definition 

of a treatment or measurement.  With the same example, we could modify our 
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objective to one of estimating the volume of wood from trees with a diameter of more 

than 10mm. 

Sometimes the complication means that an objective has to be abandoned.  This does 

not imply that the analysis need be abandoned, because other objectives may still be 

obtainable.  In some cases the problem can be turned to your advantage in that new 

objectives can be studied.  For example, in an on-farm study, two of the treatments 

involved the farmers applying 100kg mulch.  In the actual trial the quantity applied 

varied between 11kgs and 211kgs.  This might permit a study to be made of the effects 

of applying different quantities of mulch.  However we find that such complications 

are usually more useful in re-assessing the design of the subsequent trial.  Here we 

encourage scientists to be flexible in their approach.  Thus in the redesign, not "How 

do we force the force the farmers to apply 100kgs?", but "I wonder why the quantities 

they applied were SO variable?" 

The third strategy is a "quick fix".  With missing values a common quick fix is to use 

the built-in facilities in many statistics packages, namely to estimate them from the 

remaining data and then proceed roughly as if the experiment did not have the 

problem.  A quick fix in the problem of the small stems in the leucaena trial, 

mentioned earlier, might be to assume they are all 5mm in diameter.   

Quick-fixes are not risk-free even if they are built into a statistics package and we 

caution against using the automatic facilities for estimating missing values if more 

than a tiny fraction are missing.  It is quite easy to use our fourth strategy, at least to 

check that the approximate analysis is reasonable.  This is to use a more flexible 

approach to the modelling.  That often means we move from the ANOVA to the 

regression approach, because the latter does not need balance.  Hence it can adjust for 

missing values properly.  Similarly the regression approach can be used in a trial 

where post-hoc blocking would be useful, because the initial blocking was the in the 

wrong direction. 

Sometimes the more flexible approach implies that a transformation of the data would 

give a more reasonable model.  Alternatively where some treatments are more variable 

than others, the solution is to analyse the data separately for the two groups of 

treatments. 

The fifth approach is to do a sensitivity analysis.  For example, with transformations or 

odd observations, for which there is no obvious explanation, it is usually very quick to 

do two or three alternative analyses.  These correspond to different models.  If there is 

no difference in the conclusions then the results are not sensitive to the particular 

model.  It is then often useful to report your investigation and then use the model that 
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is simplest to interpret in relation to the objectives.  Where the conclusions do change 

you know that more work is needed to identify the appropriate model. 

The final strategy is to build a model to try to solve the problem.  For example, with 

the leucaena stems it might be possible to build a "one off" model for stem diameters 

of leucaena trees.  Often the construction of this model was not part of the original 

objectives and may not be needed – the quick fix is sufficient.  But it may be 

interesting and of general use later.  Thus it adds a methodological objective that is of 

general use and may be incorporated in the design of a subsequent study. 

 

 

5.   Finally 

In this guide we have tried to give the impression that the analysis is driven by a sense 

of curiosity about the data and flexibility in the approach.  The key is simply that the 

analysis should relate directly to the objectives, so they are satisfied as far as is 

possible given the data. 

We have also attempted to give guidance on how to deal with some complications 

which arise in data analysis, which could be dealt with using sophisticated methods, 

but where often a simple solution is all that is necessary.  We have not attempted to 

discuss complications where more advanced approaches are often necessary. However 

there are two instances where such methods will often be required and we briefly 

mention them here. 

The first concerns the type of data and the second returns to the issue of multiple 

levels.  Trials typically include measurements of different types.  There are often 

measurements on yield.  There may also be counts of weeds per plot, a disease score 

may be on a scale of 1 to 9 per plot, each plant may be recorded as germinating or not, 

etc.  

Any of these types of measurements may be summarised with the simple methods 

described in the preliminary analysis, but instead of summary tables of mean yields, 

we now use tables and graphs of counts or percentages, e.g. of farmers who valued a 

particular variety. 

The standard ANOVA and the regression modelling assume the data are from a 

normal distribution, and are no longer directly applicable for these types of data.  

Hence researchers often transform the data to make the assumption of normality more 

reasonable.  However, there is a more modern alternative approach.  The simple 

modelling ideas described in section A6 are often called "general linear modelling" 
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and the "general" implies that it applies to balanced and unbalanced data.  The 

analyses can be extended to "generalised linear modelling" where the "generalised" is 

because it applies to other distributions besides the normal. 

The second main area which requires more complex methods is where the data are at 

multiple levels and the simple approaches are not sufficient.  Multiple levels cannot be 

handled by the modelling approach described earlier, because this is limited to 

information at a single level. 

The standard ANOVA will handle multiple levels, only for balanced data, as in the 

case of the split-plot trial.  So, just as the regression modelling approach generalises 

the single level ANOVA, we need an equivalent to the split-plot analysis to generalise 

to situations where data are unbalanced. 

An example of this is the on-farm trial described earlier where we now want to relate 

some of the farm-level measurements, such as striga infestation, to the plot-level 

yields, but there are unequal numbers of farms with and without striga, and not all 

farmers grew the same three varieties.  We want to study the interaction table in the 

same way as we would in a standard split plot analysis, with one factor (striga) on the 

main plots and the other (variety) on the subplots, but the data structure is unbalanced. 

Multiple levels can not be handled by the modelling approach described in Part A, but 

need their own type of modelling.  This is called mixed-models or multi-level 

modelling, and is sometimes known by the names used by statistical software, such as 

REML in Genstat or PROC MIXED in SAS. 

Both the topics of non-normal data and multi-level modelling form the material of a 

further guide. 
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