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1. Introduction 

In this guide we review the basic concepts of estimation and hypothesis, or 

significance, testing.  Our aim is to discuss the key ideas of statistical inference in a 

way that is easy to understand.  These are topics we would usually like to assume, 

when discussing or giving courses on data analysis for researchers.  However, we 

often find the ideas are poorly understood and this lack of understanding contributes to 

the scepticism felt by some scientists of the role of statistics in their work.  You could 

use the following three questions to decide whether you need to read further. 

 

  True False Not 

sure 

1. The standard deviation and the standard error 

are both used to summarise the spread of the 

data 

   

2. The 95% confidence interval for the mean is 

the interval that covers roughly 95% of the 

observations.  

   

3. If the difference between the effects of two 

farm management practices is not statistically 

significant, the conclusion is that there is no 

difference between them.   

   

If you have confidently replied false to the three questions above you may have little 

need to read this guide.  Question 1 is discussed in Section 3, Question 2 in Section 4 

and Question 3 in Sections 5 and 6. 

For simplicity, we use “artificially small problems” to illustrate the ideas.  In Sections 

2 to 6 we cover the basic ideas of estimation, namely standard errors, confidence 

intervals, and hypothesis testing procedures.  In the later sections we apply the ideas.  

We outline the way in which the sample size can be chosen.  We also give our views 

on the role of non-parametric methods and on the implication of performing many 

tests on the interpretation of p-values.  One reason that these two contentious issues 

are included is that they sometimes sidetrack training courses and discussions of other 

topics, because of researchers’ strongly held views. 

The general concept of statistical modelling is introduced in the final section of this 

guide.  This provides a link to our other guides on analysis, and particularly to the one 

called Modern Methods of Analysis. 
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2. Applying Estimation Ideas 

Estimating characteristics of a population of interest, from a sample is a fundamental 

purpose of statistical work, whether the activity is a survey, an experiment or an 

observational study. 

Point estimation arises when a quantity, calculated from the sample, is used to estimate 

a population value. The sample estimates of the population mean ( ) and standard 

deviation ( ) are most often taken as the sample mean, x , and the sample standard 

deviation, s, where 

 /x x n   

and     2
/ 1s x x n    respectively. 

For example, consider estimating the average maize production per farmer among (the 

population of) smallholder farmers in a selected agro-ecological region.  To do this, 

suppose a sample of 25 farmers is randomly selected and their maize yields are 

recorded.  The average of the resulting 25 yields are calculated, giving say 278 kg/ha.  

This value is then taken as the estimate of the average maize production per farmer in 

the selected region.  It estimates what one would expect for an individual farm.  

Similarly the sample standard deviation is an estimate of the amount of variability in 

the yields from farm to farm. 

Other estimates of the population mean are possible.  For example, in many surveys 

the observations are not sampled with equal probability.  In this case we might use a 

weighted mean ˆ /x wx w    instead of x , with weights, w, that compensate for the 

unequal probabilities. 

Proportions can also be estimated, for example we may wish to estimate , the 

proportion of families who own their own land, or the proportion of respondents who 

indicate support for community co-management of neighbouring forest areas during a 

semi-structured interview.  Then we might use p = m/n, as the estimate, where m is the 

number of persons making a positive response out of the n who were interviewed.  For 

example, if m = 30, out of n = 150 interviews, then we estimate the proportion as  

p = 0.2, or 20% 

As a point estimate this is the same as a measurement, x, where x = 1 if community co-

management was supported and zero otherwise.  The estimate, p is then the same x , 

given earlier, despite the “data” originally being “non-numeric”.  Much qualitative 

material can be coded in this way. 
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If we have a contingent question, a follow-up only for those who “qualify” by 

supporting co-management, we might find, for instance, k = 12 out of the m = 30 who 

are prepared to play an active role in co-managing forest reserves.  Arithmetically,  

r = k/m = 12/30 = 0.4 has the form of a proportion, but it is actually the ratio of two 

quantities which might both change if another sample of size n is taken in the same 

way from the same population.  If the follow-up question is important, then we must 

ensure that the original sample is large enough that there are an adequate number of 

respondents who qualify (here there were 30) for the precision required of the study. 

Sometimes our main objective is not to estimate the mean.  For example, in 

recommending a new variety of maize to farmers we may wish to ensure that it gives a 

better yield, compared to the existing variety for at least 90% of the farmers.  One way 

to proceed is first to calculate the difference in yields for each farmer.  If, from 

experience, or from our sample, we can accept a normal model, i.e. that the 

population of yield differences has approximately a normal distribution, then the 

required percentage point is found (from standard statistical tables) to be 1.28  , 

where   is the mean difference and   is the standard deviation of the differences. 

In this case we can still use our estimates of   and   to estimate the required 

percentage point, or any other property.  In general we call the (unknown) quantities 

  and   the parameters of the model.  If we assumed a different probability model 

for the distribution of the yields, then we would have to estimate different parameters.  

The formulae would change, but the ideas remain the same. 

If, in the example above, we were not prepared to assume any distribution, then we 

could still proceed by merely ordering the differences in yields for each farmer and 

finding the value exceeded by 90% of the farmers.  This is a non-parametric solution 

to this problem and we return to this approach in Section 7.  Generally this approach 

requires more observations than a “parametric” or “model-based” approach, such as 

that in the preceding paragraphs. 

For reference later we explain the term degrees of freedom.  This is roughly “pieces 

of information”.  For example, with the sample of 25 farmers we discussed earlier we 

have a total of 25 pieces of information.  In any study it is usually important to have 

sufficient pieces of information remaining to estimate the (residual) spread of the 

population.  In our simple example the spread is estimated by s, and in the formula we 

divided by (n–1).  This is because the spread is being measured about the sample 

mean, x .  The sample mean is one of our 25 pieces of information, so we have n–1 or 

24 degrees of freedom left to estimate variability. 
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3. Standard Errors 

When something is estimated, it is important to give a measure of precision of the 

estimate. 

The measure of precision of an estimate is called the standard error of the estimate.  

The smaller the standard error, the greater is the precision of our sample estimate.  Thus 

a small standard error indicates that the sample estimate is reasonably close to the 

population quantity it is estimating.   

As an example, suppose we select a random sample of 12 farmers (n = 12) and measure 

their maize yields per hectare, we might find x  = 1.5 tons/ha and s = 0.6 tons.  Then our 

estimate of   is given by x  = 1.5 tons and its standard error (s.e.) is given by the 

formula  

  s.e. = s/n . 

In this case it is 0.6 / 12 = 0.17 tons/ha.  

From the above formula it is clear that we get precise estimates either because the data 

have small variability (i.e. s is small) or because we take a large sample, (i.e. n is 

large).  For example, if, instead we had taken a larger sample of 108 farmers that had 

given rise to the same mean and standard deviation, then the standard error of the mean 

would have been 0.058.  Equally, if yields had been less variable at s = 0.2 tons/ha then 

with 12 farmers, we would also have had an s.e. of 0.058.  

Depending on the investigation, we are often interested not so much in means, but in 

differences between means (e.g. differences in mean yield).  In simple situations - where 

there is equal replication of the treatments and n replicates per treatment - the standard 

error of the difference between two means is  

 s.e.d. 2/s n  

i.e. about one-and-a half times the standard error of each individual mean. 

The formulae for the standard error of a proportion or a ratio that were considered in 

Section 2 are more complicated, but the point about precision being related to sample 

size and variability of the data is general.  When the design of the study is complex, 

standard errors cannot be easily computed by “hand” and suitable software is used to 

obtain standard errors for estimates of interest such as treatment differences. 

In this section we have repeatedly mentioned that the data are a random sample from 

the population.  The reason that randomness is important is that it is part of the logic of 

the standard error formulae.  This logic is that, because our sample was collected at 
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random, it is one of many that might have been obtained.  Typically each sample would 

have given a different mean, or in general a different estimate.  The standard error 

measures the spread of values we would expect for the estimate for the different random 

samples. 

The idea of the standard error as a measure of precision can help researchers plan a data 

collection exercise.   In any study,   is the unexplained, or residual, variation in the 

data; and an effective study is one that attempts to explain as much of the variation as 

possible.  Continuing the example above, we might find that the farmers use four 

different production systems, thus giving us two components of variation.  There is 

variation between one production system and another, and there is variation between the 

farmers within a production system.   

Suppose the overall variation of the yields, ignoring the different production systems, is 

estimated as s = 0.6 tons/h while the within production-system variability is s = 0.2 

tons/ha.  If we were planning a new investigation to estimate average maize production 

we could either ignore the fact that there are different production systems and take a 

simple random sample from the whole population, or we could take it into account and 

conduct a stratified study.  The standard error formula shows us that in this instance we 

would need nine times more farmers in the simple random sample compared to the 

stratified study to get roughly the same precision.  

The guide on Informative Presentation of Tables, Graphs and Statistics describes how 

the standard error is used in the reporting of the results.  The next section of this guide, 

which is on confidence intervals, shows how the standard error is used to describe 

precision.  The width of a confidence interval is often a simple multiple of the 

standard error.  
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4. Confidence Intervals 

The confidence interval provides a range that is highly likely (often 95% or 99%) to 

contain the true population quantity, or parameter that is being estimated.  The 

narrower the interval the more informative is the result.  It is usually calculated using 

the estimate (see Section 2) and its standard error (see Section 3). 

When sampling from a normal population, a confidence interval for the mean   can 

be written as  

    ±    ×  s.e.( )x t x  

where 1nt   is the appropriate percentage point of the t-distribution with (n–1) degrees 

of freedom.   (See Section 2 for a brief explanation of degrees of freedom) 

The 95% confidence interval is commonly used, for which t-values are 2.2, 2,1 and 2.0 

for 10, 20 and 30 degrees of freedom.  So we can usually write that the 95% 

confidence interval for the mean is roughly: 

  2  s.e.( )x x   

The example in Section 3 involving 12 farmers gave x  = 1.5 tons with s.e. = 0.17.  

The 95% confidence interval for   is therefore about 1.16 to 1.84 tons/ha; and so we 

can say that that this range is likely to contain the population mean maize yield.  (The 

exact 95% interval, which one can get from a statistical software package, is 1.12 to 

1.88 tons/ha.) 

More generally, for almost any estimate, whether it be a mean, or some other 

characteristic, and from almost any population distribution, we can write that the 95% 

confidence interval is roughly 

  estimate ±2  s.e.(estimate)  

Hence it is useful that statistical software routinely provides the standard error of 

estimates.  With the example of Section 2 of p = 30/150 = 0.2, or 20% of the 150 

farmers the standard error is about 0.03, resulting in a confidence interval of about 

0.14 to 0.26. 

Note what a confidence interval is and is not.  A 95% confidence interval does not 

contain 95% of the data in the sample that generated it; very approximately the interval 

x   2s would do that.  This is sometimes called a prediction, or tolerance interval.  In 

our examples of 12 or of 108 farmers above, with x  = 1.5 tons and s = 0.6 tons, this 

interval is 0.3 to 2.7 tons/ha and we would say that most of the farmers have yields in 

this range. 
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Users often confuse the confidence interval for the mean with an interval containing 

most of the data because the objectives of the study often relate to parameters other 

than the mean.  This was considered briefly in Section 2. 

In our example above, the 95% confidence interval for the mean is 1.12 to 1.88 tons 

with the sample of 12 farmers.  With more data, this interval would be narrower as is 

seen by comparison with the confidence interval for a sample with 108 farmers, where 

the same calculations as above give a 95% interval for the mean of about 1.4 to 1.6 

tons. 

When the assumptions about the data may not be quite right, scientists may feel they 

ought to abandon the ordinary confidence interval and use some different procedure 

altogether.  Usually it is more constructive to proceed instead by using the usual 

method, but noting that the true coverage of the “95%” confidence interval may not be 

exactly 95%.  For most purposes, the 95% figure is used to provide a conventional 

measure of uncertainty about an estimate, rather than the basis for decision-making.  

The communication of the approximate magnitude of the uncertainty is usually more 

important than the exact value. 
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5. Hypothesis Testing 

5.1 A Simple Example 

For good reasons, many users find hypothesis testing challenging; there is a range of 

quite complex ideas.  We begin with a simple example.   

A researcher facilitates an on-farm trial to study the effect of using Tephrosia as a 

green manure for fertility restoration.  She claims the use of the manure will increase 

pigeon pea yields, i.e. pod weight.  In the trial pigeon peas are grown with and without 

the Tephrosia in two plots on each of eight smallholders’ fields and the values 

recorded are the differences in yields.   

We test the correctness of this claim.  In this case the “null hypothesis” is usually that 

the true mean increase,   = 0.  By the “true” mean increase we mean the increase for 

the population of farmers of which we assume our eight are a random sample. 

The alternative hypothesis is usually that the true mean increase is other than zero. 

The null hypothesis is often given, as here, quite explicitly, with the alternative 

hypothesis being vague.  This is for two reasons: 

(i) Standard statistical tests calculate the probability of getting a sample as extreme 

as the one observed, assuming the null hypothesis is true – this calculation has to 

be done using explicit values for the parameter(s) of the null hypothesis 

distribution; 

(ii) Hypothesis testing adopts the same legal presumption of “innocence until proven 

guilty”.  This is that the null hypothesis that   = 0 is to be kept, unless the data 

values are inconsistent with it. 

Textbooks often distinguish between one-sided and two-sided tests.  In this example 

we might consider the test of the null hypothesis, that   = 0, against the one-sided 

alternative that   > 0, on the assumption that there is no logical reason that the 

manure will decrease yields.  Usually a one-sided test merely halves the significance 

level, so what was significant at 4% with a two-sided test, becomes significant at 2% 

with a one-sided alternative.  As will be seen below, we are not keen for readers to 

become too attached to a particular significance level, so halving a value is not 

important enough for users to spend much time on this idea.  One-sided tests are also 

rarely found in realistic situations, such as those introduced later in this guide. 
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Example 1 

Suppose in the illustration above, the differences in pod weight (in kg) between 

“treated” and “untreated” plots were as follows. 

3.0 3.6 5.4 0.4 0.8 4.2 4.8 3.2 

A computer analysis of these data would look like: 

 
Test of mu = 0 vs mu not = 0 

 

Variable          N      Mean     StDev   SE Mean 

podweight         8     2.875     2.290     0.810 

 

Variable             95.0% CI            T      P 

podweight     (   0.959,   4.791)     3.55  0.009 

 

The t-test used to investigate the hypotheses follows the general formula: 

  (estimate – hypothesised value) / s.e.(estimate) 

Here we are interested in the mean difference in pod weight, so our test statistics is: 

     0 /s.e.t x x   

  i.e. (2.87 – 0)/0.81 = 3.55 

By comparison with the 7t  distribution, a value as extreme as 3.55 has a probability 

0.009, i.e. less than 1 in 100, of occurring.  So, if the null hypothesis is true, then there 

is a chance of just less than 1 in 100 of getting the sample we found.  Either something 

unlikely has occurred or the null hypothesis is false.  This event is sufficiently unlikely 

that we declare the result to be statistically significant and reject the null hypothesis. 

In Section 4 on confidence intervals we used a “t-value” of 2 to give approximate 95% 

confidence intervals.  Similarly we find here that values larger than 2 are extreme, (at 

about the 5% level of significance) and hence cast doubt on the hypothesised value. 

5.2 Understanding Significance 

The classical argument is that we should approach this type of decision-based testing 

in an objective way, by pre-setting the significance level, or p-value at which we 

would choose to reject the null hypothesis.  If we were working to a significance level 

of 5%, or p = 0.05, we would reject it at the 5% level and report that p < 0.05.  Rather 

than following such a stringent approach, we recommend that decisions be made on 

the grounds that a p-value is low. 
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Example 2 

We have the same hypothesis as in Example 1, but suppose we collected a slightly 

more variable sample.  The data values might be: 

3.0 3.6 6.8 1.6 2.0 5.8 7.1 0.3 

Computer analysis of these data gives the following results. 

 
 

Test of mu = 0 vs mu not = 0 

 

Variable          N      Mean     StDev   SE Mean 

podweights        8      2.87      3.64      1.29 

 

Variable             95.0% CI            T      P 

podweights    (   -0.17,    5.92)     2.23  0.061 

 

 

The standard error of the mean is now larger than in Example 1, and we get a t-statistic 

of 2.23 with a probability of 0.061.  If we used the 5% level as a strict cut-off point, 

then we would not reject the null hypothesis.  This does not mean we accept the null 

hypothesis as “true” and users who write as if it does are showing a serious weakness 

of interpretative skills.  The probability of getting such a sample under a hypothesis of 

no effect is still low so there is some suggestion of a treatment effect, but not low 

enough to meet our criterion at the 5% level. 

Here there is insufficient weight of evidence to draw a conclusion about a difference 

between the treatments.  Had a sample of 16 observations been collected, with the 

same mean and standard deviation as above, the standard error of the mean would 

have been lower (at 0.91) and consequently the t-statistic higher (at 3.15).  This would 

have been significant with a p-value of 0.007. 

Note that if hypothesis-testing is undertaken because a real decision is being made – to 

accept or reject a new variety, for example – not rejecting the null hypothesis may be 

tantamount to accepting the pre-existing variety.  This is not the same thing as 

accepting that the null hypothesis is correct. 

Generally, scientific research does not involve such cut-and-dried decision 

alternatives.  The main purpose of significance testing may just be to establish that an 

expected effect (“research hypothesis”) can be discerned and plausibly shown; not just 

to be a quirk of sampling.  Very tiny effects can be significant if sample sizes are very 

large; a significant effect also needs to be large enough to be of practical importance 

before it is “significant” in the ordinary-language use of the term.   
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Conversely, a non-significant effect does not necessarily imply that an effect is absent.  

A non-significant result can also happen if the sample size is too small or if there is 

excessive variability in the data.  In either of these cases, the effect may in fact be 

present but the data is unable to provide evidence-based conclusions of its existence.  

Such considerations show it is usually more informative to produce a confidence 

interval rather than just the decision outcome and p-value of a hypothesis test.  In 

example 1 above, the 95% confidence interval for the mean is given by 0.96 to 4.79 

using the method of calculation shown in Section 4.  This indicates that the true mean 

increase of 0 kg is unlikely, because the 95% confidence for the true mean does not 

contain the hypothesised value. 

Given a calculated t-value or other test statistic, it was traditional to compare this with 

a 5%, 1%, or 0.1% value in statistical tables.  However, since many statistical 

packages compute exact p-values, results may be accompanied by statements such as 

(p = 0.028) giving a specific numerical figure for the degree of extremeness of the 

disparity between observed results and null hypothesis expectation.  This approach is 

preferable where possible.  It is more informative and easier to interpret. 

5.3 General Ideas 

In a few studies, the objectives of the study correspond to standard hypothesis (or 

significance) tests.  The examples in the previous section provide one scenario and the 

adoption of a new farming practice, instead of a standard, is another. 

Usually however, the hypothesis testing is just a preliminary part of the analysis.  Only 

rarely can the objectives of a study be met by standard significance tests.  The 

statistically significant result provides objective evidence of something interesting in 

the data.  It serves as a “passport” to further analysis procedures.  Confidence intervals 

or an economic analysis are then used to describe the nature and practical importance 

of the results.   

When results are “not-significant” it may indicate that nothing further need be done.  

Often it enables a simpler model to be used.  For example if there is no evidence of a 

relationship between education level and adoption of a new innovative technology, 

then the adoption can be studied using all respondents together.  If there were a 

relation then it might indicate the necessity for a separate analysis (i.e. a separate 

model) for each education level group. 
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5.4 Recognising Structure 

Example 1 above illustrates how a t-test is conducted using differences between plots 

from eight smallholder farms.  The differences were used because a pair of plots was 

available from each farm.  This led to a paired t-test. 

Suppose on the other hand, we had 16 farms, each with just one plot, and eight were 

selected for trying out the “treatment”, with the remaining farms forming the 

“controls”.  The analysis then involves the comparison of two independent samples. 

It is important to recognise the structure in the data when conducting the analysis.  As 

an example, we show below what is often lost if truly paired results are treated like 

independent samples.  Here the x- and y-values represent the tensile strength of rubber 

samples collected from two plantations X and Y, on 10 occasions.  The aim was to see 

whether the two plantations differed in the quality of their rubber samples.   

 

i 1 2 3 4 5 6 7 8 9 10 Mean S.D. 

xi 174 191 186 199 190 172 182 184 200 177  185.5 9.687 

yi 171 189 183 198 187 172 179 183 199 176  183.7 9.764 

di 3 2 3 1 3 0 3 1 1 1  1.8 1.135 

 

The difference in the two means is 1.8.  For the unpaired analysis the standard error of 

this difference is calculated using the standard deviations in the last column, and found 

to be 4.3, leading to a non-significant t-value of 0.41.  The correct strategy of a paired 

analysis uses the differences in the table above.  The standard error of these 

differences is 0.36, leading to a highly significant t-value of 5.0. 

The reason for the difference is that in the unpaired analysis, the occasion-to-occasion 

variation in the samples is included in the calculation of the standard deviations used 

in the two-sample t-test.  Not eliminating this variability means the small but 

systematic differences between the pairs are not detected.  The unpaired analysis is 

unnecessarily weak where true and effective pairing exists.  In general this paired 

structure is similar to the idea of blocking in experiments and stratification in surveys, 

and needs to be properly accounted for in any subsequent data analysis. 
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6. Sample Size 

One common question that is posed to statisticians is how large a sample is needed.  

To be able to answer this type of question for an experiment or survey, information 

must be given on (1) how small a difference is it important to detect, and (2) how 

variable will the observations be for the key response(s) of interest.  This variability is 

usually reflected in the residual standard deviation of the data, because it is the 

unexplained variation of the data that relates to the precision of our data. 

These two elements are needed for the sample size to be evaluated, otherwise a 

statistician could not be expected to rubber-stamp the corresponding study as being 

adequately planned to achieve a formal objective.  This does not deny the importance 

of exploratory or pilot-studies, where the aim is to generate or specify hypotheses, or 

to evaluate a proposed methodology for the future. 

One reason for considering hypothesis tests is that their simplicity provides a basis for 

the evaluation of many sample size calculations.  This involves the power of the test, 

i.e. the probability of correctly rejecting the null hypothesis when it is false.  If your 

sample size is sufficient, then you will have a high power to detect a difference that 

you regard as being important.  

Modern statistical packages, such as Minitab, incorporate extensive facilities for 

sample size or power calculation. There are also specialist packages, such as nQuery.   

It is probably easier to improve ones “feel” for power or sample size calculations 

through hands-on use of a package than from a demonstration. 

As an example we take the paired t-test considered in Section 5.3.  Suppose that our 

aim is to choose the sample size, i.e. how many samples we need for a similar study.  

We suppose that the value of s will be about the same as before, that is about 1.1 and 

that we would like to detect a mean difference in tensile strength of rubber between 

the two plantations, of more than 1 unit with probability 0.95, i.e. we look for a power 

of 0.95.  Further, we suppose the test is to be conducted at the 5% level.  Putting these 

conditions into Minitab gives a required sample size of 18 units.   

If this is too many and we can only have 10 observations, we can keep our difference 

of 1 unit and we would find that the power is 0.73.  Or we can ask for what difference 

the power will be 0.95, giving a value of a mean difference of 1.4.  These results can 

then provide a basis for a discussion on the appropriate study to be conducted. 

A study whose power is low may have little ability to discern meaningful results.  It 

should be reconsidered, so it is large enough to establish important effects, or 

abandoned if it cannot be expected to do so.  Too large a study wastes resources, while 
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one that is too small tends also to be wasteful, as such studies often result in 

inconclusive findings.  Study size calculations are usually closely related to decisions 

on expending resources, so it is important to get them right.  

The choice of values for the power and significance levels in sample size calculation is 

debatable.  Setting the significance level at the conventional values of 5% or 1%, 

quantify the probability of falsely rejecting the null hypothesis, when it is true.  This is 

known as a Type I error.  The power to detect a minimum meaningful difference, if it 

exists, quantifies a second type of error, conventionally called a Type II error, namely 

that a real difference will remain undetected.  Commonly sample size calculations 

specify a power of 80%, though 90% is also used. 

When using results such as the example above it is important to remember that the 

calculations of sample size or power relate to a single hypothesis.  Most studies have a 

number of objectives and significance testing is usually only a small part of the 

analysis.  In general the same type of calculation should therefore be done for a 

number of the key analyses to ensure that the sample size is sufficient for all the 

objectives of the study.  Thus the proper planning of a data collection study requires 

that the main analyses are foreseen and planned for, before the data collection is 

allowed to start. 



SSC Guidelines – Basic Inferential Statistics  17 

7. Non-Parametric Methods 

The normally distributed measurement is the starting point of much statistical analysis.  

There are situations where this seems worryingly inappropriate.  Measurements are 

perhaps from a very skew distribution, where an occasional reading is much larger 

than the usual range and cannot be explained or discounted.  Results may be only 

quasi-numerical, e.g. an importance score between 1 and 10 allocated to several 

possible reasons for post-harvest fish losses.  Different fishermen may assign scores in 

their own way, some avoiding extreme scores, while others using them.  We may then 

have reasonable assurance as to the rank order of scores given by each individual, but 

doubtful about applying processes such as averaging or calculating variances for 

scores given to each reason. 

In such cases it is sensible to consider using non-parametric methods.  A simple 

example is the paired data shown earlier in Section 5.  Here the ten differences in 

breaking strength were as follows: 

3 2 3 1 3 0 3 1 1 1 

Earlier we used the t-test, but a simple non-parametric test follows from the fact that 

nine out of the ten values are positive, with the other being zero.  If there were no 

difference in the before and after reading we would expect about half to be positive 

and half negative, so this simple summary of the data provides good evidence (p = 

0.004, on a formal test) against this hypothesis.  Just noting whether the observations 

are positive, zero or negative is also clearly robust against occasional readings being 

very large – if the first difference were 30, rather than 3, this would not affect the 

analysis.  Thus non-parametric methods often provide a simple first step.  They also 

add easily explained support for the conclusions from a parametric analysis. 

We advise caution, however, about the over-use of non-parametric methods.  

Inadequate understanding of the data-generating system by the researcher may be the 

real reason for messy-looking data.  A common reason for apparently extreme values, 

or lumpy distribution of data, is often that the population sampled has been taken as 

homogeneous, when it is an aggregate of different strata, within which the 

observations follow different patterns. 

Sometimes problem data arise from poorly designed measurement procedures, where a 

more thoughtful definition of raters’ tasks would produce more reliable data.  It is then 

better to think harder about the structure of the data than to suppress the complications 

and use an analysis that ignores them. 
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The ethos of non-parametric methods often stems from assuming the measurements 

themselves are flawed, or at least weak, so that estimation procedures are of secondary 

importance.  The primary focus of most non-parametric methods is on forms of 

hypothesis testing, whereas the provision of reasonable estimates usually generates 

more meaningful and useful results. 

In the final section of this guide we outline a more general framework for the analysis 

of many sets of data that used previously to be processed using non-parametric 

methods. 
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8. Analysis of Variance 

8.1 Introduction 

Practical problems are usually more complicated than the illustrations so far.  We use 

the Analysis of Variance to illustrate how the concepts are applied in larger problems. 

Understanding the idea of analysis of variance is now a more general requirement than 

just to analyse experimental data.  The same type of generalisation is possible for data 

on proportions, or where regression, or time-series methods would be used.  When 

data are from non-normal distributions, such as survey data on counts, then the ideas 

of Analysis of Variance are generalised and are then called the Analysis of Deviance.  

The key concepts remain unchanged.  

8.2 One-Way ANOVA 

The t-test for two independent samples shown in Section 5 generalises to more than 

two samples in the form of the one-way analysis of variance.  The comparison of a 

collection of independent samples is described as a “completely randomised design”.  

We illustrate this with an example. 

In a study of species diversity in four African lakes the following data were collected 

on the number of different species caught in six catches from each lake. 

 

Lake Tanganyika Victoria Malawi Chilwa 

 64 78 75 55 

 72 91 93 66 

 

Catches 

68 97 78 49 

77 82 71 64 

 56 85 63 70 

 95 77 76 68 

Mean 72 85 76 62 

The pooled estimate of variance, 
2s , is 100.9.  The standard error of the difference 

between any two of the above means is  2s.e.d. 2 /6 5.80s  . 
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The usual analysis of variance (ANOVA) will look like:- 

 
 

One-way ANOVA: catch versus lake 

 

Analysis of Variance for catch    

Source     DF        SS        MS        F        P 

lake        3      1637       546     5.41    0.007 

Error      20      2018       101 

Total      23      3655 

 

 

The F-value and p-value are analogous to the t-value and p-value in the t-test for two 

independent samples.  Indeed, the two-sample case is a special case of the one-way 

ANOVA, and the significance level is the same, irrespective of which test is used. 

With more than two groups a significant F-value, as here, indicates there is a 

difference somewhere amongst the groups considered, but does not say where – it is 

not an end-result of a scientific investigation.  The analysis then usually continues with 

an examination of the treatment means that are shown with the data above.  Almost 

always a sensible analysis will look also at “contrasts” whose form depends on the 

objectives of the study.  For example if lakes in the Tanzanian sector were to be 

compared with the Malawian lakes, we could look at the difference in the mean of the 

first two treatments, compared with the mean of the third and fourth.  If this difference 

were statistically significant, then the magnitude of this difference, with its standard 

error, would be discussed in the reporting the results. 

In the analysis of variance a “non-significant” F-value may indicate there is no effect.  

Care must be taken that the overall F-value does not conceal one or more individual 

significant differences “diluted” by several not-very-different groups.  This is not a 

serious problem; the solution is to avoid being too simplistic in the interpretation.  

Thus again researchers should avoid undue dependence on an arbitrary “cut-off” p-

value, like 5%. 

8.3 Multiple Comparison Tests 

These tests are often known by their author and include Dunnett’s test, Neumann 

Keuls, etc.  They concern the methods of testing differences between means, which 

require ANOVA type analyses.  Some scientists use them routinely while others avoid 

their use. 

Our views are perhaps clear from Section 5.2.  Hypothesis testing is usually just a 

preliminary step, and the further analysis, often concerning the treatment means, 

relates directly to the stated objectives of the study.  This will usually involve 
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particular contrasts, to investigate differences of importance.  We do not recommend 

multiple comparison methods, because they usually do not relate to the objectives of 

the research. 

The case for the multiple comparison tests rests on the danger of conducting many 

significance tests on a set of means, for example comparing the largest with the 

smallest, without adjusting the test for the fact that we have deliberately chosen them 

as being largest and smallest.  The case is clear, but irrelevant to us in most analyses, 

because we do not wish to do lots of tests.  We want, instead to investigate the size of 

differences in relation to their practical importance. 

To take one field of application, that of agricultural field trials, then usually the 

treatment structure will be well defined, with factorial structure being the most 

common.  In such cases multiple comparison procedures are usually clearly not 

relevant.  The only type of factor where we might wish to consider multiple 

comparison methods would be perhaps variety comparison (of maize say) where we 

might wish to present the results in descending order of the mean yields.  Even here, 

we are more likely to try and understand the differences in yields as a function of the 

season length, or country of origin, etc of the varieties, than to suggest a series of tests.  

The one case for the tests would be if we wish to group the varieties into sets that 

behave similarly.  Some might use multiple comparison methods for this.  We would 

suggest cluster analysis, which has the additional advantage that it can be used on 

many variables together.  Even here, we would suggest that the cluster analysis should 

usually be part of a preliminary study, to be followed by attempts to understand the 

reasons for varieties being in one cluster or another. 

Our main concern is that users may be tempted to use a multiple comparison method 

instead of a more thoughtful analysis, and hence will miss interpreting the data in ways 

that are needed given the objectives of the study.  As long as you do not fall into this 

trap, then we invite you to do both.  We predict that when you report the results in 

relation to the objectives, you will not need to use any of the results from the multiple 

comparison methods.  So they can then be deleted from the tables in the report! 

We also discuss this problem in the guide on Informative Presentation of Graphs, 

Tables and Statistics because some scientists may have withdrawal symptoms if they 

do not present tables with a collection of letters beside the corresponding means. 
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9. A General Framework 

The illustrative examples in this guide have all been simple, to concentrate on the 

concepts.  These concepts include: 

 Our data are (or are assumed to be) a sample from some population, and we wish to 

make inferences about the population. 

 We therefore use our sample to estimate the properties (parameters) of the 

population that correspond to the objectives of our study. 

 The standard error of the estimate is its measure of precision.  Sometimes we 

report the standard error itself and sometimes we report a confidence interval for 

the unknown parameter. 

 We often use hypothesis (significance) tests to identify whether differences 

between parameters can be detected in our study.  This testing phase is often the 

first step in the inference part of the analysis. 

 

All the examples in this guide can be written in a general way as: 

 data = pattern (or model) + residual 

This is our assumed model for the population.  For example, the problem of strength 

of rubber can be written as: 

 Strength = Occasion effect + Plantation effect + residual 

Our objective was to investigate the difference between the two plantations, and the 

effect was clear.  But we also saw in Section 6, that if we omitted the occasion effect 

from the model, i.e. if we used the simpler model: 

 Strength = Plantation effect + residual  

then we could not detect the Plantation effect.  This showed that we need the 

“Occasion effect” in the model, even though studying the size of the Occasion effect 

might not have been one of our objectives. 

The model above is the same if there are more than two plantations, as in Section 7 

and would still apply if the data were not “balanced”, i.e. if plantations did not send 

samples on all occasions.  With standard statistics packages the inferences can still be 

made. 

Earlier, one limitation was that the data had to come from a distribution that was 

approximately normal, but this is no longer the case.  Parametric methods are now 

very flexible in dealing with well-behaved data, even when not normally distributed 
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and this often provides an attractive framework for data analysis than the simple tests 

that are often still in current use.  For example, instead of using a simple chi-square 

test to examine relationships in a two-way contingency table, the use of log-linear 

models provides a more general and usable framework, for inferences about 

proportions.  This general framework can be used with both two-way tables (like a 

chi-square test) and with more complicated tables of counts. 

Within this general context, significance tests are often used to provide guidance on 

how complicated a model is required.  Then, using the chosen model, we estimate, as 

above, the properties that correspond to our objectives, and give a measure of 

precision to indicate our level of confidence in reporting the results. 
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