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Update Note — July 2017

This document provides an overview of various techniques to make the most of your data so that you can
go beyond presenting simple averages and p-values from ANOVA tables.

This document was originally produced purely to reference multi-environment field trials (METS). There
are many overlaps between the analysis required for METs and the analysis required from ‘Large N’
trials. Indeed most ‘Large N’ designs would be considered a form of a multi-environment trial.

There is no detailed methodological discussion around any of the examples given, but references are
provided if you want to learn more. Whenever you see a graph or table with a numbered reference this
indicates that a practical explanation of how to replicate this analysis is provided in the appropriately
numbered appendices for either Microsoft Excel or R.

Introduction

Analysing data from an MET or large N trial requires the same general strategies, and
is at risk from the same problems and protected by the same good practice as analysis
of other data. Some useful guides are listed below. However, METs also have some
specific analysis challenges. They can be complex and have their own specific
objectives for which analysis methods have been developed. This brief overview is
designed to explain some of these special concerns and means of addressing them,
and refers to the following documents in this series:

Multi-Environment Trials: An Overview

Multi-Environment Trials: Data Quality Guide

Data Management for Multi-Experiments Trials in Excel

An Easy Introduction to Biplots for Multi-Environment Trials
MET Design Guide: A Checklist

The hardest part of analysis can be thinking through the logic of what you are trying
to do. What information are you trying to extract? What will the result look like? Can
you draw up outlines of the tables or graphs that would tell you what you want to
know before you start looking at the numbers? Does the data you have really contain
this information? Once you have these ideas clear, then the statistical analysis is often
not that complex. You can always get help with the statistics, but the logic and
outcome of the analysis is your responsibility as a scientist.

METs are useful in a wide range of contexts. They may have social or biophysical
objectives. They may be participatory in different ways. An MET could be everything
from a very controlled on-station variety selection trial, up to a participatory Large N
trial. But they will all require the same basic approaches and methods for analysis.
This is even true if the data are qualitative though some of the methods may look
different.

A successful analysis meets the objectives, is valid and provides insights; it will be
tuned to the specifics of your study and what you want to find out. There is (almost)
never just one analysis that can be done for any dataset. Unless the trial was small and
simple, there will be many questions that can be answered with the data, each with its
own analysis approach. Rich data sets will not only be analysed and reported once,
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but a good analysis will also be an iterative and learning process. While you should
start with a clear goal, you also need to be alert to surprising patterns or new ideas that
emerge from the data. Some step of analysis may suggest that your original plans
could be improved, and you go back and try again. The richness of data from an MET
that can be gleaned through repeated analysis means the data and documentation have
to be carefully archived. See the MET data management guide

e Data Management for Multi-Experiments Trials in Excel.

The nature of analysis of METSs or large N trials means it should be conducted by the
scientists who planned and are responsible for the work. It cannot usually be
delegated to a technician or statistician, neither of whom usually have the scientific
background needed. You should probably be getting expert assistance from someone
with specialist statistics skills. Then the analysis should proceed as a dialogue
between you as a scientist and the statistician. If there are others directly involved in
the trial and interested in the results, then it could be a three-way dialogue. This can
include dialogue with farmers. Farmers who managed a trial on their own land or
provided you with data are probably the best ones to give you insights into surprising
patterns (and if there are no surprising results, have you really learnt anything from
the trial?). Notes taken from formal interviews, or even informal discussions, with
farmers themselves provide a valuable source of information and should be
consideration when reporting the results. They can provide explanations that can then
be confirmed with further analysis.

A good analysis of data from these trials will almost certainly require you to use
statistical software. Excel alone is not adequate; although is still a vital tool for initial
data exploration! Many general statistical analysis systems will be suitable. In
accompanying documents we use just two other software packages, R and QGIS.
These two are selected for good reasons:

1. They are well suited to their tasks.

2. They are both completely free and open source, so are unlikely to ever
transition into commercial software (as has happened in the past with Genstat
Discovery)

3. There is good documentation and training material available.

You may also find some specialist statistical software useful, though we will not use
any here. Once you get beyond the statistical analysis to using and interpreting the
results, you may find other software useful, such as crop models.

The rest of this guide is presented as bullet points for easy reading, and can be used as
a checklist or reminder to pay attention to as you analyse your data.

1. Objectives

e Every part of the analysis depends on your objectives. List them clearly and
precisely.
e The objectives will be based on:
o The objectives that you set when designing the study; and
o ldeas you you developed since designing the study, particularly from
observations made in the field during data collection.
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Get specific. The more detail you can give the easier the analysis becomes.
Try to sketch out the key tables and graphs that will give you the information
you need.

Set objectives that answer research questions (e.g. ‘Find out if any genotypes
are widely adapted”) rather than objectives that specify a type of analysis (e.g.
‘Do a stability analysis”).

Many objectives concern interaction between options and context, or concern
risk. Make sure you understand these concepts. See the Overview document
Multi-Environment Trials: An Overview.

Remember there may be multiple objectives, with the objective driven by your
scientific interests perhaps needing to be integrated with farmers’ objectives.
For example, farmers may not be interested in the ‘the best’ but a range of
options with a range of properties.

. Prepare the data

Before analysis can start you will have to prepare the data, which involves
getting data files checked, complied and formatted for analysis.

In principle, this step is the same for as for any other experiment. But the
added complexity of the multiple environments and large quantity of data can
make it much harder in practice.

The combination across sites often means a combination of data collected,
entered, organised and ‘owned’ by different people. Hence, there is
considerable opportunity for the process to be complex and messy.

Refer to the guide in managing data from METs
Data Management for Multi-Experiments Trials in Excel

for suggestions on good practice and avoiding problems.

There is a standard ‘long format’ for data from multiple sites that is being prepared in
Excel for analysis. Make sure you understand what that is, and that your data comply.
See the note on Excel for METs

Data Management for Multi-Experiments Trials in Excel

When all the data have been compiled, check datasets carefully. Do you have
what you would expect? Do you have the right number of observations for
each treatment and from each site?

. Farmers and analysis

We tend to think of analysis of data as strictly being a task for scientists. But
any participants, including farmers, can have a role in analysis.

Farmers will probably not be interested in or able to contribute much to the
formal, numerical and statistical analysis. But they can certainly contribute to
some of the aims. For example, they can help:

o Explain why the main patterns are as they are — for example,
explaining that option A suffered more from drought while option B
was prone to pests.

o Explain apparent discrepancies or oddities in the data. For example,
they might tell you why plots were neglected on some farms, why
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crops did very well in some niches, or why women rate varieties
differed from men.
Your challenge is to find accessible ways of presenting collective results that farmers
can understand. This will allow them to put the experience on their farm into the
broader context of what others experienced.

4. Exploratory analysis

¢ In the exploratory stage of analysis, calculate the summaries and present them
in tables and graphs that will start helping you answer your questions and meet
objectives.

e This step is less dependent on statistical methods as on your imagination in
thinking of the displays or presentations that will answer your questions and
linking them to the data available.

e Design them based on what you want to know, not on what you know how to
generate.

e A few simple example are shown here:
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PivotTables in Excel are an easy way to interactively explore and understand relationships
between variables with your data. In this case an experiment was done with some farmers,
with each farmer using the same 4 different fertiliser treatments, including a control group.
Looking at the relationship between an assessment of a farmer’s wealth status and crop
yields for just the control plots within a single location, does not show a big difference in
the average values of yield when split by wealth. Although there are only a small number of
farmers included in this trial. Using the filters, and the row and column structure can allow
us to investigate many different relationships within our data.
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The graph presents the interaction plot at each location. The x-axis is for £P, y-axis is crop
yield, orange and blue lines are + lime and each frame is a site. It shows there is an
interaction at both sites, but it is not the expected interaction and it is not quite the same at
both sites. P fertilizer is less effective with lime than without, the opposite of what was
expected. And in the second site Lime + P is worse on average than Lime Only. This plot
also helps to emphasise how different the yields in the two sites.
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Boxplots are a way of exploring the variability in the data as well as the averages; using the
data from the same example as the line plots shows extremely large amounts of variability
in the Kapkere site relative to the Kiptaruswo site. The plot also clearly shows the benefits
of using either lime or P in Kiptaruswo, given all farmers are getting similar, low, yields
(tightly packed box at bottom of scale) where neither is used. The yields where either lime
or P or both is used look to be higher for all farmers. The benefits are much less clear for
Kapkere; some farmers are already getting good yields without any fertiliser.
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Difference In Yield "Lime + P" - "P Only"

From the same trial — looking at the comparison between Lime + P and P Only from 15
farmers. The cumulative distribution is plotted, showing about 40% of farmers had a yield
loss with adding lime to P. For some farmers the difference was almost exactly zero; for
others it resulted in a yield gain of 0.6 t/ha; whilst for others a yield reduction of 0.6 t/ha.
The next step is to explore what might explain this wide variation

Comparison Plot of Lime + TSP against TSP Only by site

site
kapkerer

Lime + TSP

* Kiptaruswo

1 2 3

TSP Only

Plotting the data from each treatment in a scatter plot can also help to explain variability.
Each point represents one farmer with the x value being the yield from the P-Only
treatment and the y value being the yield from the Lime + P treatment. The blue line is a
smoother fit to help show the trends. In this case we might hypothesise that adding lime on
top of P is effective if yield was <2 t/ha; and is a hindrance if yield was >2 t/ha. However,
in this case the number of farmers is still quite small, so caution is needed when interpreting
these results. But this approach may start to help generate future hypotheses.

e Exploratory analysis will reveal:
o Odd observations that need investigation. Check for errors and refer to
field notes for explanations. Correct errors. Omit odd data points if
they you know why they are odd and that they do not present what you




wanted to measure. Do not simply omit any data point that fails to
meet your expectations.

o Note that spotting odd observations will require some of your plots to
show original data rather than just means.

o Unexpected patterns that might make you go back and rethink your
analysis objectives. See the first example below.
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A plot of raw data from a variety trial showing yield (y-axis) for a number of
varieties (x-axis) for four seasons (separate graphs) and 5 locations (colours). A
large amount of raw data is shown in a compact style. The key observation is the
very high variation in yield between multiple observations of the same clone in the
same site and season. First step: check the data. If it is confirmed, then analysis
should focus on explaining the source of that variation.
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Yields (y-axis) of 25 varieties (x-axis) across 8 locations (colours). One location (in
purple) has such consistently low yields for all varieties that it probably does not
make sense to include it in a GXE analysis with the other sites.




Sometimes exploratory analysis will show that results in one (or more)
environments are so different from the rest that including it in a common
analysis does not make sense. See the second example above.

Sometimes simple summaries, tables and graphs cannot pull out the main
results, and more sophisticated exploratory methods are needed. See the
example below and the section on GXE.
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Performance of 8 genotypes of a crop across 24 environments. In principle the GXE
interactions can be inferred from the graph. But the number of points and lines
makes it hard to spot patterns such as which environments are similar or whether
some genotypes are particularly well adapted to a group of environments.

Confirmatory analysis

By ‘confirmatory analysis’ we mean the formal statistical procedures that

allow you to confirm that patterns revealed by exploratory analysis are ‘real’.
By ‘real’ we mean they are repeatable, or large compared to the uncertainty.
This is shown by calculating standard errors or confidence intervals for critical

quantities. Results of statistical hypothesis tests may also be useful

sometimes, though these are often overused and incorrectly interpreted. See

Confidence and Significance. [link].
You do need to be familiar with statistical concepts and methods to do this
part of the analysis, and you will need appropriate statistical software.
There is no single correct analysis for an MET. The methods to use will
depend on:

o Your specific objectives;

o the design; and

o the nature of the data.



e For experiments with replicated designs in each environment, it is usually wise
to start with a separate analysis first to check for oddities and look for
common patterns. Looking for oddities often means looking at the residuals
from a statistical model. You need to get familiar with interpretation of

residuals.

o For balanced experimental designs, you will probably need to be familiar with
the methods of cross-environment analysis of variance. For the purposes here,
a balanced design is one in which (a) the same treatments occur in the same
sort of layout in each environment, and (b) the layout in each environment a
completely randomised or randomised block design.

Error: location:rep

Df Sum Sg Mean 5q F wvalue Pr(>F)

Tocation 885.3 126.47 148.2 <2e-1g ***
Residuals 23 19.86 0. 85
Signif. codes: 0O f#**' g,001 ***' 0,01 **' Q.05 f." 0.1 ¢ " 1
Error: Within
pf Sum Sg Mean 5q F wvalue Pri{=F)

genotype 24 12.85 0.5356 1.654 0.0268 *
location:genotype 168 S85.86 0.5289 1.632 1.92e-05 **¥
Residuals 552 178.79 0.3239

0 fEFET 0,001 fRET 0,01 f*T 0.05 LT 0.1 F T L

Signif. codes:

Basic cross-location ANOVA
for a trial involving 25
genotypes evaluated at 8
locations.

e For unbalanced and less regular designs, then you will need to be familiar with

the use of mixed models and REML.

> anova(mod4,ddf="Kenward-Roger" , type=1)

Analysis of variance Table of type I with Kenward-Roger
approximation for degrees of freedom

Sum Sg Mean Sq NumDF  DenDF F.walue PF{>F)
321.87 45.981 232.00 148.242 < 2.2e-16 *=**

location 7
24 537.10

genotype 11.65 0.485 1.564 0.04347 *
location:genotype 82.70 0.492 168 508.21 1.587 6.624e-05 ***
Signif. codes: 0O f**+' p,001 ‘**' Q0,01 **' 0.05 f." 0.1 F ' 1

=

Random effects:

Groups Name variance std.Dev.

location:rep:block (Intercept) 0.01651 ©0.1285

location:rep (Intercept) 0.01842 0,1357

Residual 0.31017 0.5569

Number of obs: location:rep:block, 155; location:rep, 31

775, groups:

Using a mixed model and REML to
analyse the previous example. The
design at each site was a lattice,
with small BLOCKSs within each
REP.

e Both of these methods have tricks and complications to get familiar with, for

example:

o Generalisations such as those to deal with data measured on other
scales, such as yes/no data or scores.

o Tools for checking the assumptions and changing approach if needed.
This includes analysis of residuals and looking for spatial pattern.

o Methods for extracting and presenting means and their measures of

precision.

o It will be necessary to iterate between exploratory and confirmatory analyses.

e Sometimes the statistical tools of confirmatory analysis are needed to extract
exploratory information. For example, if there is a hypothesis that 4 factors all
affect the performance of a technology on farms, statistical modelling will be
needed to estimate their effects. It is usual not possible to find simple
summaries and plots that will show the effect of multiple factors on a

response.
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. GXE or OxC interaction

The MET Overview document [link] has explained the concept of interaction
in objectives or METs. Traditionally this is genotype by environment (GXE)
interaction, but the same ideas and methods can be used to look at other
situations that we described generally as options by context (OxC) interaction.
In the simplest cases, good graphs will suggest whether there is interesting
GXE interaction, and ANOVA or mixed models will provide the confirmation
and measures of precision. However, we usually need to use some specifically
adapted tools to pull out clear conclusions from large or complex studies.

The GXE interaction may be so striking that it simply needs common sense to
describe it. For example, if there are useful genotype differences at one site but
at another everything fails, this is GXE. But it is handled simply by looking at
the two sites separately, and trying to understand why there was complete
failure at one of them.

After exploratory analysis, try to start with an appropriate ANOVA or mixed
model that includes a GXE term. This will show if there is any interaction to
understand and explain.

Be aware that a conclusion of ‘no significant GXE interaction’ in an ANOVA
or mixed model does not necessarily mean there is none! In large problems,
some interesting pattern can be lost in a lot of noise. Be alert for this if the
degrees of freedom for GxE is large.

The concept of stability v local (or niche-specific) adaptation is important. An
option is stable if its performance does not change much with environment. An
option is locally adapted, or adapted to a specific niche, if it performs well in
some well-defined contexts even though it may not perform well generally.
The ideas are explained well by (Paolo Annicchiarico 2002).

For many years, agricultural research sought stability and statisticians
developed measures to help identify stable options. Currently there is
increasing recognition of the benefits of matching options to niches, so
stability might be a less important concept.

When measuring stability, distinguish between static and dynamic stability.

o An option or genotype is statically stable if its performance does not
change with context or environment.

o An option or genotype is dynamically stable if its performance does
change with context or environment, but in line with the mean for that
environment. Thus a dynamically stable genotype will have low yield
in poor sites and high yield in good sites, but its performance relative
to other genotypes will not change with environment.
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Various measures of stability have been
developed. For example, Lin and Binns
based a measure on the differences between
performance of each genotype and the
performance of the best in that
environment(Lin & Binns 1988). A low
value of the superiority index indicates a
genotype that does well across many
environments. g4 and g18 have similar
overall mean values, but the superiority
score is much lower for g18 than g4. This
suggests g18 is likely to be more consistent
across environments than g4, which is likely
to be performing very well in certain
environments but less well in others.

There are many approaches to statistical analysis of GXE or OxC interaction,
many identified by the original authors names and some often generating
intense argument over their relative merits. Most can be implemented starting
with the O x C table or mean performance data.

The methods all fall into one of three groups (Paolo Annicchiarico 2002):

Modelling response to measured environment variables.

o

If we measure characteristics of each environment (e.g. seasonal
rainfall) then we could relate the performance of each genotype to that
measure by regression modelling. Differences in the relationship for
different genotype are a component of GXE.

The method has the strong advantage that it suggests mechanisms and
interaction, and would allow some prediction about what would
happen in a new environment.

The method has the disadvantages of (a) requiring some insight into
what might be responsible for GXE (having a hypothesis) so that you
know what to measure at each site; (b) being able to summarize the
many dimensions of difference between environment in a few simple
measures; and (c) assuming that the relationships can be modelled in a
simple way by regression.

It may also be possible to measure some characteristic of each
genotype (eg duration length) and get further insight into interaction, as
in this example:
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Analysis of Variance TabTe

Response: yield

site 10
variety 10
site:block 22
rain:maturity 2
site:variety 98
Residuals 220

Signif. codes:

Sum
734,
24,
2.
4.
89,
31.

Sg Mean sq

48

73.
2.

u}
2
0.
o}

448
425
-130
176
914
- 145

F value
506. 9100
16.7332

0. 89338
15.0208

6. 3088

Pri{=F)
2.2e-16 **=*
2.2e-1g ***

0.5953

. 676E-07 ***
2.2e-1g ***

0 fees? 0,001 frR? Q.01 ft7 0.05 f.T 0.1 F T a1

An example with 11
varieties over 11 sites
recorded the rainfall at
each site. Varieties fell
into 3 groups of short,
medium and long
duration. A usefully
large part of the GXE
interaction is due to
differences in the way
varieties of different
duration respond to
rainfall.
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A graph of the results
shows that, on average,
long and medium
duration varieties have a
positive response
(increasing yield) to
rainfall, but short
duration varieties do not
respond to rainfall.
Maybe they reach
maternity before water
stress becomes an issue.
They appear more
stable with respect to
rainfall, but also
produced lower yields.

2. Constructing an environment index and modelling response to it
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o If we did not measure something useful about each environment we
can construct an ‘environmental index’ for each from the genotype
performance data then do an analysis similar to 1 above.
o The method is motivated by noticing that a common form of GxE
interaction is that some genotypes do well in ‘good’ environments but
others do relatively better in ‘poor’ environments. We define the
environment quality by the average performance of all the genotypes,
using that average as an index.
o The method has the advantage of being data driven and not requiring
addition environmental data.
o The method has the disadvantages of (a) only revealing and describing
very specific types of GXE interaction; (b) giving results for a given
genotype that is dependent on which others happen to have been
included in the trial.
o There are many variations on the method (Hildebrand 1983; Finlay &
Wilkinson 1963).
o The results are often interpreted in terms of stability.
2 SO dseen e e et maseesy T oiessss | The yields from the groundnut
S Giiaesiars  1ess.ee los.cois o.ssisire  o.a0sass | €xample with 25 entries and 8
: 012 1024.820  1070.511 los.c01s o.swssree o073 | €NVironments was analysed for
7 o1c 1770.704 1670263 w0o.co1s  1.o7evsss  o.10s4775 | SENSitivity to environment index.
8 gle 1920.789 1961.963 109.6012 1.0954125 0.1024773 -
] g17 1658.109 1694.964 109.6012 0. 9804901 0.1024773 Results for JUSt ll genotypes are
OB BEE RS SER D shown The Sensitvit
parameter is the regression
slope. Genotype g10 is relatively
stable. Genotype g16 does better
in good environments.
Plotting sensitivity against mean
Sensitivity
shows the trade-off. Genotype
2 g1l is not sensitive (or is stable)
o but has a low mean. Genotype
022 g2 has a high mean but is
o sensitive — it will perform
e gt relatively poorly in poorer
£ = s g16 environments. Entry g18 has a
z " 20 high mean and average
24 o 0 918 sensitivity.
g9 g3
2 . Remember you can always get
gt %fas perfect stability (sensitivity=0)
S e by selecting a genotype that
' ' ' ‘ ‘ produces 0 everywhere! Nothing
1700 TR0 900 2000 2100 can be more stable than that, but
Adusted Mean it is not very useful.
Reliability indices combine
estimates of mean and stability.
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3. Pattern analysis, looking for structure in the OxC table

o Statistical methods can be used to identify structure in the 2 way table
of genotype by environment means. A number of methods can be used
based on methods of principal components and biplots.

o Two popular sets of methods are AMMI (additive main effects,
multiplicative interaction) models and plots (Gauch 1992) and GGE
(genotype and genotype by environment) biplots (Yan et al. 2000).

Both have their supporters and detractors. Both have their uses in
different situations.

o See Easy Biplots [link] for details.

o Advantages of these methods are that they can show up patterns that
might otherwise be missed.

o Disadvantages of the methods are (a) the difficulty in working out
exactly what the result show and understanding how they were
constructed; and (b) the fact that they generally only work on complete
GXE tables. The methods fail if some genotypes did not appear in some
environments.

o The previous method of constructing an environmental index is closely
related to this method. You will need to get familiar with the

mathematics of what is going on in these analyses. See the Easy Biplot
guide [link] for a start.

Which Won Where/What

: Example of a GGE biplot for data
on 8 genotypes (green) in 24
environments (blue). See Easy

e Biplots [link] for more examples
. and interpretation.
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While we have presented these as three alternatives, there are connections and
links between them. Each approach has many variations and enhancements.
Using the methods described above for understanding OxC or GXE interaction

can be powerful. But it is also easy to get seduced by the method and lose
track of the objectives and interpretation. When you get lots of output

‘significant’ results and sophisticated looking graphs, step back a little and
ask:

o Do these results make scientific sense? Can you explain what they
show in terms of people and plants, microbes and money or whatever?
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o Are the results of practical use — for example, are interactions large
enough to be gainfully exploited or to influence any decision?
o Do the results take you nearer to meeting your objectives?

. Risk analysis

Risk is important to farmers and many projects have an aim of reducing risk.
Yet few gquantitative analyses attempt to measure risk. This may be for two
reasons: there are many different types of risk, each would require its own
study, and getting sufficient data to estimate risk can be difficult. Here we
look at just two well-defined examples of risk and the way they could be
estimated from METSs.

Researchers often aim to make recommendations to farmers, such as crop and
management options to use, which are based on the empirical results of
experiments. Results always show variation between farms and farmers. We
typically quote means and use these to make recommendations. But, is the
mean relevant to a new farmer taking a decision to adopt? The variation in
performance between farms that have compared alternatives gives insight into
the risk faced by the new farmer. Hence, we can use data from trials conducted
across many farms to look at the variation and risks.

A large-N design is essential for being able to carry out a good risk analysis,
as it requires the estimation of the full distribution of results — not just the
average value. This requires more data!

The details depend on the exact objectives and design. One example is shown
in the box below.

probability no exceeded

1 Yield increase with a soil fertility
technology showed much variation
& between 31 farms. This is risk faced

by an individual farmer basing

0.6 - - .
decisions on the mean result. The

— empirical risk curve is in blue. A
simple normal model (red) seems a
02 good approximation to risk.

2 3

yield increlase (t/ha)
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There was a suggestion that some of
the risk is associated with landscape
position — it should work better on
flat land. Breaking down by slope

/ / —fat class shows that indeed changing
— e | from flat to gentle shifts the risk

) // seep | | CUrve. For steep land the chance of
o both very high or low yield increase

/ is greater than for flat land — it is
= ‘ uncertain. But the sample size for

el Trccuasa {e/f) steep land was very small.

08—

probability not exceeded

¢ Risk considerations can be built into GXE analyses of variety trials. See (Paolo
Annicchiarico 2002). Reliability indices try to account for trad-eoff between
mean and risk in performance.

¢ Note that farmers may well be interested in finding a range of options that they
can adapt to different niches or contexts, rather than simply knowing the best
‘on average’. Careful analysis of farmers aims and interests may suggest
different approaches to analysing risk data and presenting results

e A second source of risk is season-to-season variation in the weather, with
rainfall often the most important. Estimating that directly from experimental
data requires long series of experiments, and these can rarely be done.
Anyway, we want answers long before they would be finished. Two options
are (a) using variation in rainfall between different places as a proxy for
variation over time (b) looking at variation in weather records that do exist and
trying to infer something about effect on the options.

e One simple way is to conduct an experiment over several seasons and try to
‘guess’ the weather characteristics that have led to the result (e.g. a long dry
spell after planting, good rain during grain filling), then use weather records to
estimate the risk of those conditions.

3. Growing Period Onset (julian day) In this example ( Traore et al 2012)
e - - — | the date of the start of the growing
season (x-axis) is shown for 3 years
ml‘;-’ij(m) s of an experiment, together with the
\ distribution of this date for four
k different reference periods
j I\ (coloured curves). We see that in
2010 the start date was about
average. In 2008 and 2009 it was
later than average but not unusually
so. If the late start in 2009 caused a
problem for your crop, you better
150 200 | do something about it, as a start
even later than that is fairly likely.
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The difficulty with this method is that performance is not related to a single
weather event, but to the cumulative weather experience of the season. Crop-
weather models try to simulate that and can sometimes be used to substitute
for empirical field data.

If realistic relationships between performance and environment variables can
be found, then it may be possible to map risk results.

An MET was carried out in about
80 environments in southern
Africa. Performance of a soil

§ management option was estimated
in each and related to rainfall,
altitude and soil variables. Using
information on the variation in
rainfall etc. across the region, it
was possible to produce this risk
map. It shows the probability that
a farmer adopting the new
technology gets only a small
return. Details in Coe et al (to

appear).

Probability

Il 00-0.1
Ml o.1-02
Hlo2-03 Tanzania 4
M 03-04
B 0.4-05
B 05-06
0.6-0.7
0.7-0.8
0.8-0.9
0.9-1.0

Zimbabwe

Extending the scope

The analysis of an MET should not end with statistical analysis. The statistics
is a small part of the overall task of merging what you have learnt with the
existing knowledge base and exploring the implications.

Tools to use might include economic models, farm system models, GIS, crop
models and more. The limitation is your imagination!

O
H
O
|
|

GTA Dur- Chen's In this example (P.

GTA Dur - Simeto
GTA Dur - Ofanto
Simeto - Chen's - Sahel 77 - Mexicali 75
M.B. Bachir - GTA Dur - Bidi 17 - Ofanto

Annicchiarico et al.
2006) results of trials that
showed GXE have been
combined with rainfall
and temperature data to
produce maps of
recommendation domains
for different varieties
(colours on the map)
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9. Reporting

e Justdo it! But it will take a plan and coordinated effort.

e Remember you will need different types of reports for the very different
audiences.

e Anyone who participated in the MET, particularly farmers, must get feedback
on the results in a format that is understandable and useful to them.

10. References and further reading

e Confidence and Significance (SSC)
http://www.reading.ac.uk/ssc/n/resources/Docs/Inferential_Statistics.pdf

All the others are docs for this w/s
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